Estimating the epidemic risk using non-uniformly sampled contact data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Downsampling Non-Uniformly Sampled Data

Decimating a uniformly sampled signal a factor D involves low-pass antialias filtering with normalized cutoff frequency 1/D followed by picking out every Dth sample. Alternatively, decimation can be done in the frequency domain using the fast Fourier transform (FFT) algorithm, after zero-padding the signal and truncating the FFT. We outline three approaches to decimate nonuniformly sampled sign...

متن کامل

Robust extraction of multiple structures from non-uniformly sampled data

The extraction of multiple coherent structures from point clouds is crucial to the problem of scene modeling. While many statistical methods exist for robust estimation from noisy data, they are inadequate for addressing issues of scale, semi-structured clutter, and large point density variation together with the computational restrictions of autonomous navigation. This paper extends an approac...

متن کامل

Fast Multipole Method based filtering of non-uniformly sampled data

Non-uniform fast Fourier Transform (NUFFT) and inverse NUFFT (INUFFT) algorithms, based on the Fast Multipole Method (FMM) are developed and tested. Our algorithms are based on a novel factorization of the FFT kernel, and are implemented with attention to data structures and error analysis.

متن کامل

Personalized Ranking for Non-Uniformly Sampled Items

We develop an adapted version of the Bayesian Personalized Ranking (BPR) optimization criterion (Rendle et al., 2009) that takes the non-uniform sampling of negative test items — as in track 2 of the KDD Cup 2011 — into account. Furthermore, we present a modified version of the generic BPR learning algorithm that maximizes the new criterion. We use it to train ranking matrix factorization model...

متن کامل

Continuous-Time Model Identification and State Estimation Using Non-Uniformly Sampled Data

This contribution reviews theory, algorithms, and validation results for system identification of continuous-time state-space models from finite inputoutput sequences. The algorithms developed are autoregressive methods, methods of subspace-based model identification and stochastic realization adapted to the continuous-time context. The resulting model can be decomposed into an input-output mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Reports

سال: 2017

ISSN: 2045-2322

DOI: 10.1038/s41598-017-10340-y